DFLX 33 Doc. No. Rev. No. Date:January 6, 2003 Page 1 of 1 Author: Sandor Feher #### 0. Cover Sheet for Check Out Form Power leads being tested: 7500 A DFLX <u>33</u> 7500 A DFLX <u>34</u> | Task # | Responsible | Task | Rece | eived | Perfo | rmed | |----------------|--------------|------------------------------------|------|-------|-----------|-------| | | | | Date | ,time | Date | time, | | 1 | Inspection | Unpack the leads | | | 5/23 | | | 2 | Inspection | IB4 mech. & Tolerances | | | 5/23 | | | 3 | Mechanical | Move the leads to MTF | | | 6/30 | | | 4 | Electrical | Initial electrical check out | | | 6/13 | | | 5 | Mechanical | Installation of the current leads | | | 7/16 7/17 | | | 5a | Mechanical | Preliminary leak check Procedure | | | 7/2 | | | 6 | Mechanical | Pressure test | | | 7/17 | | | 7 | Mechanical | Leak check | | | 7/22 | | | 7a | Mechanical | Top plate insertion into the dewar | | | 7/22 | 133co | | 8 | M. Tartaglia | Configuration of the DAQ system | | | 7/23 | 0830 | | 9 % {X} | Electrical | Room temp. electrical test | 7/22 | 13:30 | 7/23 | 11:45 | | 1 io 🕳 | Mechanical | Installation of the top plate | 7/23 | 11:45 | 7/23 | 15:03 | | 10 6. | Mechanical | Cool down | | | | 0700 | | /13 | Electrical | Electrical & instrumentation test | 7/24 | 9:00 | 7/24 | 12,45 | | 14 | Mechanical | Connect the leads to the Power | ' | | 2/24 | 23- | | | | Supply & configure | | | 7/24 | 1335 | | 15 | Electrical | Electrical & instrumentation test | 7/24 | | 7/24 | 14:00 | | 16 | M. Thompson | Cold test of the power lead | | | 7/25 | 1200 | | 17 | Mechanical | Perform a Thermal cycle | | | 7/25 | 1630 | | 18 | M. Thompson | Cold test of the power lead | | | 7/28 | 1200 | | 19 | Mechanical | Warm up | , | | 7/28 | 1615 | | 20 | Electrical | Electrical & instrumentation test | 7/29 | | 7/29 | 1215 | | 21 | Mechanical | Remove the top plate | | | 7/30 | 0800 | | 22 | Mechanical | Remove the leads from the top | | | 7/30- | | | | | plate | | | 7/31 | | | 23 | Mechanical | Pack and move the leads | | : | 7/31 | - | > 10.1 High Pot in HE 7/23 15:03 7/23 15:46 ### 7500A HTS Power leads for the LHC DFBX Doc. No. Rev. No. Date: January 6, 2003 Page 1 of 1 **Author: Sandor Feher** ### 1. Unpacking Check Out Form | <u> </u> | |--| | Performed by SUDHIR GHANTA WILLIAM (signature) Date & time 5/23/03 10.10 Am | | (name typed) (signature) | | Date & time $\frac{3/23/03}{10\cdot10} \frac{10\cdot10}{4}$ | | | | Note: Save the shipping container for storing and moving the leads around TD and after | | the test is complete to ship them to the DFBX manufacturer. | | The second secon | | 1.1 Container Identification: 7500 A DFLX 33 7500 A DFLX 34 | | (Leads serial numbers are on one side of the container) | | (Leads serial numbers are on one side of the container) | | 1.2 Note and distance of altimates assets to | | 1.2 Note condition of shipping container | | No damage ☐ Massive damage ☐ | | | | 1.3 Examine condition of g-load indicators | | a. Each side of the box are Shock Watch-s are installed | | Not tripped | | Not tripped Tripped (red) Remark: | | | | b. Each leads have a Shock Watch installed onto their body | | Not tripped [7]/ Tripped (red) [7] Remark: | | Not tripped | | Not tripped [7] Tripped (red) Remark. | | a. Each leads have enother "10C DDOD" devices installed on the flow of the involve | | c. Each leads have another "10G DROP" devices installed on the flag of the leads | | Not tripped Tripped (Black) Remark: 33 Not tripped Tripped (Black) Remark: 34 BOTTOM MARGOW: | | Not inpped Impped (Black) Remark: 34 BOTTOM HULOW. | | | | 1.4 Container content: | | a. Power leads: 7500 A DFLX 33; 7500 A DFLX 34; b. Travel document for each lead in an envelope | | b. Travel document for each lead in an envelope | | c. In a plastic box: | | 1. One clamp: Item No. C105-12-401; Description NW16/10 Clamping ring | | ST/STEEL PK1 | | 2. One valve made by "precision Cryogenic System" | | 3. One O-ring seal with brass insert | | J. One O-thig seat with blass theelt Li | | SOME OTHER DADITY | ### Review of Pirelli Traveller DFLX 33 & DFLX 34 | HTS
Lead# | Pr
Test | Leak
Test | Volt
Test | Small
Hole
Pos
O/T | Small
Hole
Size
O/T | Large
Hole
Pos
O/T | Dist Between Holes O/T | |--------------|------------|--------------|--------------|-----------------------------|------------------------------|-----------------------------|------------------------| | DFLX33 | OK | OK | OK | 0.0018 | OK | OK | ОК | | DFLX34 | OK | OK | OK | 0.0029 | 0.0006 | ок | ОК | PART NAME: 7.5 KA CURRENT LEAD ASSY (LE REV NUMBER: SER'NUMBER: STATS COUNT: 1 75004 DFLX 33 | MN | DIM CYL | | CATION OF | CYLINDER C | YL -A- | | |----|---------|-------|-----------|------------|--------|--------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | D | 99.000 | 0,200 | 0.200 | 99.052 | 0.052 | 0.000 | | MIN | I DIM -A-= | ROUNDNES | S OF CYLIN | IDER CYL -A | | | |-----|------------|----------|------------|-------------|-------|--------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | М | 0.000 | 0.200 | 0.000 | 0.084 | 0.084 | 0.000 | | MA | MM DIM -B-= FLATNESS OF PLANE PLN -8- | | | | | | | | |----|---------------------------------------|-------|-------|-------|-------|--------|--|--| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | | | М | 0.000 | 0.050 | 0.000 | 0.004 | 0.004 | 0.000 | | | | M | M DIM PER | P1= PERPEI | ND OF PLAN | NE PLN -B- 7 | O CYLINDE | R CYL -A- EXT | END=0.000 | |----|-----------|------------|------------|--------------|-----------|---------------|-----------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | | М | 0.000 | 0.400 | 0.000 | 0.157 | 0.157 | 0.000 | 1 No. 1 1 | | MA | I DIM PER | P2= PERPE | ND OF PLAN | NE LRG FLAN | NGE TO CY | LINDER CYL -A- EXTEND=560.000 | |----|-----------|-----------|------------|-------------|-----------|-------------------------------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | М | 0.000 | 0.400 | 0.000 | 0.251 | 0.251 | 0.000 | | M | M DIM -C- D | IA= LOCATIO | ON OF CYL | INDER -C- | | | | |----|-------------|-------------|-----------|-----------|--------|--------|--| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | | D | 80.000 | 0.200 | 0.200 | 79.930 | -0.070 | 0.000 | | | MN | DIM CON | CEN2=CON | CENTRICITY | FROM CYL | INDER -C- | TO CYLINDER CYL -A- | |----|---------|----------|------------|----------|-----------|---------------------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | М | 0.000 | 1.000 | 0.000 | 1.563 | 1.563 | 0.563 | | ММ | I DIM RND | 2= ROUNDN | ESS OF CY | | · | | |----|-----------|-----------|-----------|-------|-------|--------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | М | 0.000 | 0.200 | 0.000 | 0.068 | 0.068 | 0.000 | | MN | DIM DIST1 | = 2D DISTAI | VCE FROM | PLANE PLN - | B- TO PLAN | E LRG FLANGE PAR TO YAXIS | |----|-----------|-------------|----------|-------------|------------|---------------------------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | М | 561.000 | 1.000 | 1.000 | 561.441 | 0.441 | 0.000 | | MA | DIM LOC5 | TRUE POS | ITION OF C | IRCLE CIR2 | | | | |----|----------|----------|------------|------------|---------|--------|--------| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | X | 0.000 | | | | 0.000 | 0.000 | | | Z | 123.571 | | | | 123.396 | -0.175 | | | DF | 18.000 | 0.200 | 0.200 | 0.177 | 17.977 | -0.023 | 0.000 | | TP | MMC | 0.130 | | 0.177 | | 0.350 | 0.044 | | MM DIM LOC10= TRUE POSITION OF CIRCLE CIR3 | | | | | | | | | | | |--|---------|-------|-------|-------|---------|--------|--------|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | X | -78.890 | | | | -78.955 | -0.066 | | | | | | Z | 95.047 | | | | 94.906 | -0.141 | | | | | | DF | 18.000 | 0.200 | 0.200 | 0.177 | 17.977 | -0.023 | 0.000 | | | | | ΤP | MMC | 0.130 |
 0.177 | | 0.312 | 0.005 | | | | | MI | MM DIM LOC11= TRUE POSITION OF CIRCLE CIR4 | | | | | | | | | | | | |----|--|-------|-------|-------|--------|--------|--------|-----------------|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | | Χ | 78.890 | | | | 78.947 | 0.056 | | | | | | | | Z | 95.047 | | | | 94.895 | -0.152 | | 1 | | | | | | DF | 18.000 | 0.200 | 0.200 | 0.178 | 17.978 | -0.022 | 0.000 | 建设设,通过基础 | | | | | | ΤP | MMC | 0.130 | · | 0.178 | | 0.324 | 0.016 | | | | | | | MM | DIM LOC12 | = TRUE PO | SITION OF | CIRCLE CIR | 5 | · · · · · · · · · · · · · · · · · · · | | |----|-----------|-----------|-----------|------------|---------|---------------------------------------|--------| | ΑX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | X | 78.890 | | | | 78.948 | 0.058 | | | Z | -95.047 | | | | -95.179 | -0.132 | | | DF | 18.000 | 0.200 | 0.200 | 0.171 | 17.971 | -0.029 | 0.000 | | TP | MMC | 0.130 | | 0.171 | | 0.288 | 0.000 | | MN | MM DIM 16.00 DIA HOLE #5= TRUE POSITION OF CIRCLE CIR6 | | | | | | | | | | | |----|--|-------|-------|-------|---------|--------|--------|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | Χ | -78.918 | | | 1 | -78.954 | -0.037 | | | | | | | Z | -95.047 | | • | | -95.162 | -0.115 | | | | | | | DF | 18.000 | 0.200 | 0.200 | 0.125 | 17.925 | -0.075 | 0.000 | | | | | | TP | MMC | 0.130 | | 0.125 | | 0.242 | 0.000 | | | | | | MM DIM 8.433 DIA HOLE #1= TRUE POSITION OF CIRCLE SH1 | | | | | | | | | | | |---|----------|-------|-------|-------|----------|-------|--------|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | PR | 90.550 | | | | 90,670 | 0.120 | | | | | | PΑ | -153.000 | ĺ | | | -152.956 | 0.044 | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.098 | 8.531 | 0.098 | 0.000 | | | | | TP | MMC | 0.080 | | 0.098 | | 0.278 | 0.099 | | | | | MN | MM DIM 8.407 DIA HOLE #2= TRUE POSITION OF CIRCLE SH2 | | | | | | | | | | | | |----|---|-------|-------|-------|----------|-------|--------|--|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | | PR | 90.550 | ı l | | | 90.658 | 0.108 | | | | | | | | PA | -171.000 | | | | -170.930 | 0.070 | | | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.097 | 8.530 | 0.097 | 0.000 | | | | | | | ΤP | MMC | 0.080 | | 0.097 | | 0.310 | 0.132 | | | | | | | MM | MM DIM 8.433 DIA HOLE #3= TRUE POSITION OF CIRCLE SH3 | | | | | | | | | | | | |----|---|-------|-------|-------|----------|-------|--------|----------|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | | PR | 90.550 | | | | 90.680 | 0.130 | | | | | | | | PA | -135.000 | | | | -134.980 | 0.020 | | | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.095 | 8.528 | 0.095 | 0.000 | 100 3103 | | | | | | TP | MMC | 0.080 | | 0.095 | | 0.268 | U 0931 | | | | | | | M | / DIM 8.433 | DIA HOLE# | 4= TRUE PO | OSITION OF | CIRCLE SH4 | | | | |----|-------------|-----------|------------|------------|------------|-------|--------|-----| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | PR | 90.550 | | | 1 | 90.584 | 0.034 | | | | PA | 171.000 | | | | 171.083 | 0.083 | | | | DF | 8.433 | 0.200 | 0.000 | 0.098 | 8.530 | 0.098 | 0.000 | 100 | | TP | MMC | 0.080 | | 0.098 | | 0.271 | 0.094 | | | MM | DIM 8.433 | DIA HOLE # | 5= TRUE P(| DSITION OF | CIRCLE SH5 | | | |----|-----------|------------|------------|------------|------------|--------|--------| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | PR | 90.550 | | | | 90.545 | -0.005 | | | PA | 153.000 | | | | 153.106 | 0.106 | | | DF | 8.433 | 0.200 | 0.000 | 0.094 | 8.527 | 0.094 | 0.000 | | TP | MMC | 0.080 | | 0.094 | | 0.336 | 0.162 | | MA | M DIM 8.433 | DIA HOLE# | 6= TRUE PO | OSITION OF | CIRCLE SH6 | | | | |----|-------------|-----------|------------|------------|------------|--------|--------|---------------------------------------| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | PR | 90.550 | | | | 90.462 | -0.088 | | | | PA | 135.000 | | | | 135.120 | 0.120 | | | | DF | 8.433 | 0.200 | 0.000 | 0.091 | 8.524 | 0.091 | 0.000 | 1648. BENG | | ΤP | MMC | 0.080 | | 0.091 | | 0.417 | 0.246 | ····································· | | MN | / DIM 8.433 | DIA HOLE # | 7= TRUE P | OSITION OF | CIRCLE SH7 | | | | |----|-------------|------------|-----------|------------|------------|--------|--------|-----------------| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | PR | 90.550 | | | l. | 90.396 | -0.154 | | | | PA | 117.000 | | | | 117.095 | 0.095 | | | | DF | 8.433 | 0.200 | 0.000 | 0.091 | 8.523 | 0.091 | 0.000 | BENEFIT BENEFIT | | TP | MMC | 0.080 | | 0.091 | | 0.431 | 0.260 | | | PART | NUMBER=7.5 | KA CURRE | NT LEAD A | SSY (LBNLO | 1) DATE=5 | /23/2003 | TIME=11:3 | 9:16 AM | | | |---|------------|----------|-----------|------------|-----------|----------|-----------|--|--|--| | MM DIM 8.433 DIA HOLE #8= TRUE POSITION OF CIRCLE SH8 | | | | | | | | | | | | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | PR | 90.550 | | | | 90.340 | -0.210 | | | | | | PA | 99.000 | | | | 99.071 | 0.071 | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.097 | 8.530 | 0.097 | | B 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | ΤP | MMC | 0.080 | | 0.097 | | 0.475 | 0.298 | | | | | М | MM DIM 8.433 DIA HOLE #9= TRUE POSITION OF CIRCLE SH9 | | | | | | | | | | | | |----|---|-------|-------|-------|--------|--------|--------|---------------------------------------|--|--|--|--| | ΑX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | | PR | 90.550 | | I | | 90.353 | -0.197 | | i . | | | | | | PA | 81.000 | | | | 81.011 | 0.011 | | | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.093 | 8.526 | 0.093 | 0.000 | 134, 40 | | | | | | ΤP | MMC | 0.080 | Ī | 0.093 | | 0.397 | 0.224 | · · · · · · · · · · · · · · · · · · · | | | | | | ΑX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | |----|---------|-------|-------|-------|--------|--------|--------|--------------| | PR | 90.550 | | | | 90.346 | -0.204 | | | | PA | 63.000 | | | - 1 | 62.989 | -0.011 | | | | DF | 8.433 | 0.200 | 0.000 | 0.087 | 8.519 | 0.087 | 0.000 | Santa Contra | | TP | MMC | 0.080 | 1 | 0.087 | | 0.410 | 0.243 | | | M | MM DIM 8.433 DIA HOLE #11= TRUE POSITION OF CIRCLE SH11 | | | | | | | | | | | | |----|---|-------|-------|-------|--------|--------|--------|---|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | | PR | 90.550 | | | | 90.372 | -0.178 | | | | | | | | PA | 45.000 | | | | 44.927 | -0.073 | | | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.094 | 8.526 | 0.094 | 0.000 | 13 d 18 | | | | | | ŢΡ | MMC | 0.080 | | 0.094 | | 0.424 | 0.251 | | | | | | | М | MM DIM 8.433 DIA HOLE #12= TRUE POSITION OF CIRCLE SH12 | | | | | | | | | | | | |----|---|-------|-------|-------|--------|--------|--------|-------|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | | PR | 90.550 | | | | 90.437 | -0.113 | | | | | | | | PA | 27.000 | | | | 26.895 | -0.105 | | | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.097 | 8.530 | 0.097 | 0.000 | | | | | | | TP | MMC | 0.080 | | 0.097 | | 0.401 | 0.224 | ***** | | | | | | M | M DIM 8.433 DIA HOLE #13= TRUE POSITION OF CIRCLE SH13 | | | | | | | | | |----|--|-------|-------|-------|--------|--------|--------|-----------|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | PR | 90.550 | | | | 90.502 | -0.048 | | | | | PA | 9.000 | | | | 8.898 | -0.102 | | | | | DF | 8.433 | 0.200 | 0.000 | 0.095 | 8.528 | 0.095 | 0.000 | 图像型像 通過重编 | | | TP | MMC | 0.080 | | 0.095 | | 0.337 | 0.162 | **** | | | MI | MM DIM 8.433 DIA HOLE #14= TRUE POSITION OF CIRCLE SH14 | | | | | | | | | | | | |----|---|-------|-------|-------|--------|--------|--------|--|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | | | PR | 90.550 | | .] | | 90.508 | -0.042 | | | | | | | | PA | -9.000 | Ĭ | | | -9.077 | -0.077 | | | | | | | | DF | 8.433 | 0.008 | 0.000 | 800.0 | 8.528 | 0.096 | 0.088 | | | | | | | ΤP | MMC | 0.003 | | 0.008 | | 0.259 | 0.248 | | | | | | | MM DIM 8.433 DIA HOLE #15= TRUE POSITION OF CIRCLE SH15 | | | | | | | | | | | |---|---------|-------|-------|-------|---------|--------|--------|-------------------------------|--|--| | AX | NOMINAL | +TOL | -TOL | BONUS | MEAS | DEV | OUTTOL | | | | | PR | 90.550 | | | | 90.574 | 0.024 | | | | | | PA | -27.000 | | | | -27.107 | -0.107 | | | | | | DF | 8.433 | 0.200 | 0.000 | 0.100 | 8.533 | 0.100 | 0.000 | 188' 441 | | | | ΤP | MMC | 0.080 | | 0.100 | | 0.342 | 0.162 | "我们不是!" "你是我们们就是我们们就是这么?" 的复数 | | | | MN | . 1 2 2 | D DISTANC | E FROM LINI | E FRT END TO | LINE LIN2 | PAR TO YAX | IS | |----|----------|-----------|-------------|--------------|-----------|------------|-----| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | | М | 1450.000 | 0.400 | 0.400 | 1452.554 | 2.554 | 2.154 | 111 | | MN | MM DIM 130.0DIA= LOCATION OF CIRCLE OD1 | | | | | | | | | | |----|---|-------|-------|---------|--------|--------|--|--|--|--| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | | | | | D | 130.000 | 0.200 | 0.200 | 129.909 | -0.091 | 0.000 | | | | | PART NUMBER=7.5 KA CURRENT
LEAD ASSY (LBNL01) DATE=5/23/2003 TIME=11:39:17 AM PAGE#=4 'MM DIM 502 COOLING HOLE= 2D DISTANCE FROM CIRCLE ID15 TO PLANE LRG FLANGE PAR TO YAXIS AX NOMINAL +TOL -TOL MEAS DEV OUTTOL M 502.000 0.400 0.400 501.472 -0.528 0.128 | MI | M DIM X LC | C OF COOL | NG HOLE= | LOCATION | OF CIRCLE | ID15 | |----|------------|-----------|----------|----------|-----------|--------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | X | 0.000 | 1.800 | 1.800 | 0.392 | 0.392 | 0.000 | | DE | G DIM WAR | M TERMINA | AL= 3D ANG | LE (TRUE) F | ROM PLAN | E PLN2 TO | ZAXIS | |----|-----------|-----------|------------|-------------|----------|-----------|-------| | AX | NOMINAL. | +TOL | -TOL | MEAS | DEV | OUTTOL | | | Α | 0.000 | 0.100 | 0.100 | -0.107 | -0.107 | 0.007 | 3 | | MM DIM X LOC OF WARM TERM= LOCATION OF PLANE MID PLN | | | | | | | |--|---------|-------|-------|-------|-------|--------| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | Х | 0.000 | 0.130 | 0.130 | 0.155 | 0.155 | 0.025 | | ίΝ | DIM POLAF | R ANGLE OF | COOLING | HOLE= LOC | ATION OF | CIRCLE ID15 | | |------|-----------|------------|---------|-----------|----------|-------------|--| | AX N | OMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | | PA | 90.000 | 2.000 | 2.000 | 89.551 | -0.449 | 0.000 | | | MM | DIM 444.5= | 2D DISTANC | E FROM | LINE FRT END | TO PLANE | PLN -B- PAR TO YAXI | ŝ | |----|------------|------------|--------|--------------|----------|---------------------|---| | AX | NOMINAL | +TOL | -TOL | MEAS | DEV | OUTTOL | | | М | 444.500 | 1.500 | 1.500 | 445.463 | 0.963 | 0.000 | | Doc. No. Rev. No. Date: January 6, 2003 Page 1 of 1 **Author: Sandor Feher** ### 3. Form for moving power leads | 7500 DFLX 33 & 7500 DFLX 34 Approved by 6/20/03 SandorFeher (name typed) | (signature) | |--|---| | Date & time | | | The request should go through Marsha Schwhereabouts of the power leads. | nmidt who is responsible keeping track of | | Requested by ROGER RABEHL (name typed) Date & time 6/26/03 10:-2 | Koger Rabell | | Date & time $\frac{6/26/03}{10.2}$ | (signature) | | Clire 200, H | Wishboard | | Delivered by CLIF (3C3C1) Date & time | (signature) | | Received by Lean Blili | DEAN VALIDIS | | Date & time 6-30 (name typed) | (signature) | | The next person(5. Installation of the current leads into the | responsible to perform Checkout form #5 e top plate) has been | | | (signature) | | Notified by | , , | | Notified by | | | | | Doc. No. Rev. No. Date:January 15, 2003 Page 1 of 2 Author: Fred Lewis ### 4. Initial Electrical Checkout | Note: Save the shipping container for storing and moving the leads around TD and after the test is complete to ship them to the DFBX manufacturer. | |---| | Performed by Dan Epoy (sometime) | | Performed by Day Epoy (signature) Date & time 4-13-03 10:00 | | Power Lead 7500 A DFLX 33 | | When checkout is complete, make sure you place this document in the Traveler Binder | | 3.1 Voltage segment and drop measurement. Apply 5 Amps between the copper flag and the LTS cable. Record the applied current | | 3.2 Verify that between pin 5 and the coiled wire at the bottom of the lead has continuity Connector 1 (Primary) Pin 5 and end of the wire continuity is OK ■ not OK □ Comments Connector 2 (Redundant) Pin 5 and end of the wire continuity is OK ■ not OK □ Comments 3.2.1 Using a small piece of fiberglass tape, mark the Primary and Redundant wires 3.3 Temperature sensor resistance measurements. 3.3.1 Two wire measurement on connector 3 (Fisher DEE104Z086): | | Resistance between Pin 1 and pin 2 Ω
Resistance between Pin 1 and pin 3 Ω
Resistance between Pin 1 and pin 4 Ω | Doc. No. Rev. No. Date:January 15, 2003 Page 2 of 2 **Author: Fred Lewis** #### 4. Initial Electrical Checkout LEAD 33 Resistance between Pin 2 and pin 4 Ω Resistance between Pin 3 and pin 4 Ω Pins 1-4 resistance to lead Ω Pins 1-4 resistance to flange Ω . 59 Ω Resistance between Pin 5 and pin 6 Resistance between Pin 5 and pin 7 109.54 Ω Resistance between Pin 5 and pin 8 109.54 Ω Resistance between Pin 6 and pin 7 109.54 Ω 109.53 Resistance between Pin 6 and pin 8 Resistance between Pin 7 and pin 8 .40 Ω Pins 5-8 resistance to lead 00 Ω Pins 5-8 resistance to flange Resistance between Pin 9 and pin 10 .48 Ω Resistance between Pin 9 and pin 11 .109.38 Ω Resistance between Pin 9 and pin 12 .109.38 Ω Resistance between Pin 10 and pin 11 .109.39 Ω Resistance between Pin 10 and pin 12 .109.39 Ω Resistance between Pin 11 and pin 12 .49 Ω Pins 9-12 resistance to lead Ω Pins 9-12 resistance to flange Ω 3.3.2 Using HP3458 DVM measure temperature sensor resistance with the four wire measurement technique: Resistance of T1 $\underline{109.02}$ Ω (I+ at pin 1, I- at pin 2, U+ at pin 3, U- at pin 4) Resistance of T2 $\underline{108.90}$ Ω (I+ at pin 5, I- at pin 6, U+ at pin 7, U- at pin 8) Resistance of T3 $\underline{108.90}$ Ω (I+ at pin 9, I- at pin 10, U+ at pin 11, U- at pin 12) Looking from the top of the lead down where the LTS cable is located. Connector 2= Redundant and Connector 1= Primary # 7500 A HTS Power Leads for the LHC DFBX: 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 1 of 14 ### Stand 3 LHC-HTS Lead Testing: 5. Installation of the Current Leads **Lead Pair** Negative Lead: DFLX 33 Positive Lead: DFLX34 Signed Date 7-17-03 ### 7500 A HTS Power Leads for the LHC DFBX: ### 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 2 of 14 #### 1. Mechanical Integration of Current Leads in Test Facility - Using wedges, tilt the insert by 10° so that the power leads will be vertical when installed. 1.1 - 1.2 Clean sealing surfaces inside the chimneys with acetone and/or alcohol wipe. - 1.3 Position the upper insulator in each chimney according to Figure 1.3. - 1.4 Position the PEEK seal in each chimney according to Figure 1.3. - 1.5 Position the lower insulator in each chimney according to Figure 1.3. Figure 1.3 2 – Upper Insulator, 3 – Lower Insulator, 6 – PEEK Seal 1.6 Attach the lifting/insertion tool to the lead flag as shown in Figure 1.6 and remove the lead from the shipping container. # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 3 of 14 <u>Figure 1.6</u> The lifting/insertion tool bolted to a power lead in preparation for removing it from the shipping container. - 1.7 Remove the plastic plug from the 4-20 K gas inlet on the lead body. - 1.8 Remove the protective covers from the lower and upper flanges. - 1.9 With alcohol, clean the lower flange and the upper flange knife edge and sealing surface. - 1.10 Prepare to install the power lead baffle by removing the short threaded rods to open the baffle. - 1.11 Install the baffle on the lead with the pointed tips of the threaded rods pointing toward the bottom of the lead. An installed baffle is shown in Figure 1.11. Figure 1.11 A baffle installed on a power lead. - 1.12 Clamp the end support around the lower flange so that the handles will rest on the backs on the C-channels clamped to the steel table. - **1.13** Set the lead in the C-channels on the steel table. - 1.14 Clean the top plate Conflat flange knife edge and copper gasket. Install the gasket on the top plate Conflat flange. | Negative Lead DFLX | <i>3</i> 3 | Positive Lead DFLX | 34 | |-------------------------|------------|--------------------------|----| | THE BUTTO LOUG DI LIZZ. | | I object to bond by bir. | | # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 4 of 14 1.15 Align the top plate rotatable Conflat flange to the orientation shown on Figure 1.15, where the leak check grooves on the flange align with the middle tensioning studs. **Figure 1.15** The 20-hole Conflat bolt pattern is bisected by center tensioning studs. - **1.16** Back down the nuts on the tensioning studs. - 1.17 Swing the lifting/insertion tool 180 degrees as shown in Figure 1.17 in preparation for lifting the power lead into the vertical position. Figure 1.17 The lifting/insertion tool in position to lift the power lead into a vertical position. 1.18 Strapping the overhead crane to the lifting/insertion tool and manually guiding the lower end support, lift the lead and position it vertically while not allowing any loading on the bottom end of the lead. | | Negative Lead DFLX | 33 | Positive Lead DFLX | 34 | |--|--------------------|----|--------------------|----| |--|--------------------|----|--------------------|----| # 7500 A HTS Power Leads for the LHC DFBX: ### 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 5 of 14 **1.19** Remove the lower end support. 1.20 Tie a weighted string to the LTS bus to help guide it through the chimney during installation. 1.21 Install the lead in the chimney per Figure 1.21a until the lower sealing flange bottoms out. The flag should be toward the bayonet connections on the insert. The negative lead is installed on the left hand side, and the positive lead is installed on the right hand side as shown in Figure 1.21b. Figure 1.21a HTS Lead in Test Chimney. Note: CERN chimneys
do not have bellows. # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 6 of 14 Figure 1.21b Locations of the negative and positive leads. 1.22 Raise the nuts on the tensioning studs to hold the lead in place, as shown in Figure 1.22. Figure 1.22 The positions of the tensioning studs, nuts, and top plate Conflat flange as the 20 Conflat bolts are tightened. # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 7 of 14 1.23 Center the lower end of the lead in the chimney using the centering shim blocks. The Teflon inner centering shim blocks are labeled with an 'I' and go between the power lead and the lower insulator. The Teflon outer centering shim blocks are labeled with an 'O' and go between the lower insulator and the chimney. The installed Teflon centering shim blocks are shown in Figure 1.23. Figure 1.23 The installed Teflon centering shim blocks. - 1.24 On the power lead flange, number the Conflat bolt holes 1 through 20 as indicated by Figure 1.25. - 1.25 If there is a gap between the top plate Conflat flange and the Pirelli flange, pull the bellows up to close the gap using bolts 1 through 4. - 1.26 Use a 5/16 12-point socket to tighten the 20 Conflat bolts. The tightening must be made gradually in ¼ turn increments to a final torque of 15 ft-lbf (180 in-lbf). The tightening sequence is given by Fig. 1.26. # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 8 of 14 Figure 1.26 Tightening sequence for the 20 Conflat bolts. - 1.27 Unbolt the lifting/insertion tool from the installed power lead. - 1.28 Install Belleville Washer Assemblies on each tensioning stud per Figures 1.28a and 1.28b. A spherical washer must be placed below the Belleville washer holder on each stud. In the figures: Items 11 (10 each) are Belleville Washers, arranged as shown; Items 6 (2 each) are flat washers; Items 4 and 5 are the Belleville Washer Holder; Item 10 are Spherical Washers for above and below the washer holder; Item 9 is a loading nut; and Item 8 is a jam nut. # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 9 of 14 Figure 1.28a An installed Belleville Washer Assembly. Figure 1.28b An installed Belleville Washer Assembly. 1.29 Tighten the 6 Belleville Washer Assemblies to apply load to the PEEK seal. 1.29.1 Washers for Lead DFLX __33____ Negative Lead DFLX 33 Positive Lead DFLX 34 ### 7500 A HTS Power Leads for the LHC DFBX: ### 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 10 of 14 Ensure that the tensioning rod nuts used in 1.22 have a gap of about 5 mm below the 1.29.1.1 lead flange. Tighten the 6 loading nuts finger-tight. With adjustable parallels, measure and record 1.29.1.2 the gap "y" indicated in Figure 1.28a between Item 5 and the current lead top flange at the 6 locations specified in Figure 1.29.1.5. Units are mm. 1.29.1.3 For each of the six studs: remove the adjustable parallel, adjust it for 1.8 mm of compression, and return the adjustable parallel into position under the Belleville washer holder. Record the adjusted heights of the adjustable parallels. Units are mm. 1.29.1.4 Using the sequence A through F in Figure 1.29.1.5, tighten the loading nuts 1/4 turn until the total compression is 1.8 mm at each of the six locations. As each loading nut is tightened ¼ turn, check off the appropriate line. # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 11 of 14 Figure 1.29.1.5 The specified sequence for tightening the Belleville Washer Assemblies. 1.29.1.5 Record the final measured gaps 'y' in Figure 1.28a. Units are mm. 1.29.1.6 Remove the Teflon centering shim blocks from the installed power lead. 1.29.2 Washers for Lead DFLX 34 **1.29.2.1** Ensure that the nuts used in 1.22 have a gap of about 5 mm below the lead flange. 1.29.2.2 Tighten the 6 loading nuts finger-tight. With adjustable parallels, measure and record the gap "y" indicated in Figure 1.28a between Item 5 and the current lead top flange at the 6 locations specified in Figure 1.29.1.5. Units are mm. **1.29.2.3** For each of the six studs: remove the adjustable parallel, adjust it for 1.8 mm of compression, and return the adjustable parallel into position under the Belleville washer holder. Record the adjusted heights of the adjustable parallels. Units are mm. 1.29.2.4 Using the sequence A through F in Figure 1.29.1.5, tighten the loading nuts ¼ turn until the total compression is 1.8 mm at each of the six locations. As each of the loading nuts is turned ¼ turns, check off the appropriate line. | | | سسا سر | 1 | The second | | and the second | |----|---|----------|----|------------|----------|----------------| | Α_ | B | <u> </u> | D_ | E | <u> </u> | | | Negative Lead DFLX33 | Positive Lead DFLX 34 | |----------------------|-----------------------| |----------------------|-----------------------| # 7500 A HTS Power Leads for the LHC DFBX: ### 5. Installation of the Current Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 12 of 14 | | | | _Leads _ | | | | |----|----|---|-------------|----|--------------|-----| | Α | | В | , c <u></u> | D/ | E <u> </u> | | | A | | В | C | D | . E <u>~</u> | F | | A | */ | В | . c | D | E | _ F | | A | | В | . C | D | E | _ F | | Α. | | В | c | D | E | | | Α. | | В | c | D | E_V | F | | Α. | | В | C | D | E_ | F | | Α | | В | C | D | E | F | **1.29.2.5** Record the final measured gaps 'y' in Figure 1.28a. Units are mm. **1.29.2.6** Remove the Teflon centering shim blocks from the installed power lead. 1.30 On both power leads, tighten down the jam nuts to secure the loading nuts on the installed Belleville Washer Assemblies. 1.31 Tighten the nuts on the underside of the current lead top plate against the plate to provide stability during transportation. #### 2. Pressure Test 2.1 Follow the procedure specified in the document entitled, "7500 A HTS Power Leads for the LHC DFBX: 6. Pressure Test Procedure." #### 3. Leak Check Follow the procedure specified in the document entitled, "7500 A HTS Power Leads for the LHC DFBX: 7. Leak Check Procedure." #### 4. Electrical Integration of Current Leads in Test Facility 4.1 Attach the G-10 clamshell clamp at the bottoms of the power leads, and install the clamp support. Make connection to LTS pigtails. The joint is a mechanical connection with a stainless steel clamp (supplied by LBNL) and indium foil between the cables to ensure good electrical contact. Figure 4.1a shows a rendition of the installed power leads. Figure 4.1b shows the G-10 clamshell clamp, the clamp support, and the mechanical clamp. | Negative Lead DFLX | 33 | Positive Lead DFLX | 34 | | |--------------------|----|----------------------|----|--| | | | 1 COM TO DOGG DI LII | | | ### 7500 A HTS Power Leads for the LHC DFBX: ### 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 13 of 14 Figure 4.1a Side View of Lead in Cryostat with the LTS cables connected. Figure 4.1b Electrical integration of the LTS sections. # 7500 A HTS Power Leads for the LHC DFBX: # 5. Installation of the Current Leads Doc. No. Rev. 4 (RJR) Rev. Date: July 14, 2003 Page 14 of 14 - 4.3 Clamp a piece of bus wire and a little indium to the LTS cable. Solder the two V5 voltage tap wires to the bus wire. Wind excess voltage tap wire around the bottom of the lead, securing it with Kapton and glass tape. - 4.4 Insulate the superconducting cable with Kapton and glass tape. - 4.5 Install He space temperature sensors and LHe liquid level probes. - **4.6** Install the bottom fill tube. - Bolt the heaters to each power lead. Use grease at the interface to improve the thermal contact between the heater and power lead. - 4.8 Measure and record dimensions required for the insert map. | Negative Lead DFLX 33 | Positive Lead DFLX | 34 | | |-----------------------|--------------------|----|--| |-----------------------|--------------------|----|--| 5a. Preliminary Leak Check **Procedure** Doc. No. Rev. - (RJR)Rev. Date: May 12, 2003 Page 1 of 2 ### **FERMILAB Technical Division** ### 7500 A HTS Power Leads for the LHC DFBX: 5a. Preliminary Leak Check Procedure **Lead Number:** DFLX 33 Signed 09 / Date 07/02/03 ### 5a. Preliminary Leak Check Procedure Doc. No. Rev. - (RJR) Rev. Date: May 12, 2003 Page 2 of 2 | -4 | TD | | ~ | |----|-------------|----------|------------| | 1. | Preparation | for Leak | k Checking | - 1.1 Put the power lead on the steel table, with the power lead lower flange resting in the end support clamp. - **1.2** Plug the 4-20 K inlet. - 1.3 Attach an adapter to the top of the power lead so that a leak detector can be connected. ### 2. Leak Check-Lead Number DFL X · 33 - 2.1 Pump out the power lead with the leak detector. - **2.2** Record the baseline reading from the leak detector. Baseline: 585×5 - 2.3 Spray all joints with He and watch for a signal from the leak detector - 2.4 Record the maximum leak detector reading. Maximum reading: 580 x 5 = 7.3 e 4th cc/se 6. Pressure Test Procedure Doc. No. Rev. 1 (RJR) Rev. Date: Feb. 13, 2003 Page 1 of 2 ### **FERMILAB Technical Division** ### 7500 A HTS Power Leads for the LHC DFBX: 6. Pressure Test Procedure **Lead Pair** Negative Lead: DFLX33 Positive Lead: DFLX34 00 Fatel 7- 17-03 #### 6. Pressure Test Procedure Doc. No. Rev. 1 (RJR) Rev. Date: Feb. 13, 2003 Page 2 of 2 | 1. Preparation for Pressurization | |-----------------------------------| |-----------------------------------| 1.1 Install the bayonet plug into the 4-20 K supply bayonet on the top plate. Tie it down. 1.2 On the 4-20 K female bayonet vacuum jacket, cap off one of the 1/4 inch compression fittings. Connect the test
gauge and associated tubing to the second 1/4 inch compression fitting. 1.3 Install Conflat blankoffs on the vents of the installed power leads. 1.4 Put the cover cans over each lead vent and tie them down. 1.5 Connect a nitrogen bottle to the pressure test tubing. #### 2. Pressurization Pressurize the 4-20 K circuit to 65 psia (50 psig) and record the initial pressure from the test gauge. Initial pressure: 64.8 psia 2.2 Wait five minutes and record the final pressure from the test gauge. Final pressure: (648 psia #### 3. Release of Pressure - **3.1** Isolate the nitrogen bottle. - 3.2 Release the pressure by opening the hand valve on the pressure test tubing. - 3.3 Disconnect the pressure test tubing from the top plate/insert. 7. Leak Check Procedure Doc. No. Rev. - (RJR) Rev. Date: February 7, 2003 Page 1 of 2 ### **FERMILAB Technical Division** ### 7500 A HTS Power Leads for the LHC DFBX: 7. Leak Check Procedure **Lead Pair** Negative Lead: DFLx33 Positive Lead: DFLX34 #### 7. Leak Check Procedure Doc. No. Rev. - (RJR) Rev. Date: February 7, 2003 Page 2 of 2 | 1. | Preparatio | n for | Leak | Checking | |----|------------|-------|------|----------| |----|------------|-------|------|----------| 1.1 Cap/plug the two 1/4 inch compression fittings on the 4-20 K female bayonet vacuum jacket. 1.2 Remove the Conflat blankoff from one of the lead vents and install the modified Conflat with a vacuum pumpout. 1.3 Attach a leak detector to the vacuum pumpout installed on the top of one of the power leads. #### 2. Leak Check 2.1 Pump out the 4-20 K circuit with the leak detector. **2.2** Record the baseline reading from the leak detector. 63 Division X 50 scale Baseline: 7.37e7 atu, ce suc. 2.3 Spray all joints with He and watch for a signal from the leak detector **2.4** Record the maximum leak detector reading. 63 Jusson X50 sale Maximum reading: 7.37e-7 ats. cc. sec. Doc. No. Rev. 1 (SF) Date:January 31, 2003 Page 1 of 1 Author: Fred Lewis # 9. Room Temperature Electrical Checkout Note: Save the shipping container for storing and moving the leads around TD and after the test is complete to ship them to the DFBX manufacturer. | Performed by | Dan W, F | Fred L | Tun Waters | | |--------------|----------|-----------------|---------------------|----| | Date & time | 7/23/03 | | (Signature) | | | | · | 3½ and Neg. Pow | er Lead 7500 A DFLX | 33 | When checkout is complete, make sure you place the original and a copy of this document in the Traveler Binder. Before beginning checkout, be sure that all 4-pin hypertronic connectors in dewar have been connected and taped up with fiberglass tape. Also install positive and negative lead heaters. Be sure to put thermal compound on back of heaters before attaching. 3.1 Voltage segment and drop measurement. Connect Kepco power supply cable to the leads. On stand 4, be sure that power supply box is switched to stand 3 and HFU kepco. Under stand 4 platform, connect stand 3 trim cable to shunt current monitor. Turn on kepco and set for 10 amps. Set up function generator for square wave. You should see current go from +10A to -10A. Frequency should be set at .01 (approx. 100 seconds). Check the cryo computer numerical display for trim to verify approx. 10A on leads. Record the applied current ______/O_____A Connect both primary and redundant vtap cables to positive and negative lead. Go to the back of vtap distribution box and disconnect both primary and redundant vtap cables for the positive and negative lead. Using a breakout box and these cables measure the voltages between the following pins: Use HP3458 DVM, set it to 40-line cycle integration time. #### **Positive Lead** | Voltage tap Con | inector I (Primary) (I | fisher DEE104. | A06) | | | |-----------------|------------------------|-----------------|-----------------------|-------|------------| | Pin 1 - pin 2 | (160uv) <u>/45 u</u> \ | / Pin 2 - pin 3 | (450uv) | 4250 | <u>.</u> V | | Pin 1 - pin 3 | (610uv) <u>563 L</u> V | Pin 3 - pin 4 | (480uv)_ | 4512 | V | | Pin 1 - pin 4 | (1.1mv) <u>/.0</u> ₩ V | Pin 4 - pin 5 | $(3.5 \text{mv})_{-}$ | 3.3 ~ | _ V | | Pin 1 - pin 5 | (4.7mv) 4.3 ~ \ | 7 Pin 5 - pin 6 | (float)_ | | _V | | Pin 1 - pin 6 | (float) V | | | | | Doc. No. Rev. 1 (SF) Date: January 31, 2003 Page 2 of 2 **Author: Fred Lewis** # 9. Room Temperature Electrical Checkout | Performed by | | · · · · · · · · · · · · · · · · · · · | | |--|---|---------------------------------------|--------------------------| | Date & time | (Name typed) | (Sign | nature) | | | | | | | Pos. Power Lead | 7500 A DFLX 34 a | and Neg. Power Lea | d 7500 A DFLX 33 | | Voltage tap Connec | ctor 2 (Redundant) (Fish | ner DEE104A06) | | | | ! (160uv) <u>147 in</u> V | | Duv) <i>419</i> ~ V | | Pin 1 - pin 3 | (610uv) <u>569 y</u> V | Pin 3 - pin 4 (480 |)uv) 450a V | | | (1.1mv) 1.0 V | | | | | (4.7mv) <u>4.3 m</u> V | Pin 5 - pin 6 (flo | at) V | | —————————————————————————————————————— | (float) V | | | | Negative I | | | | | Voltage tap Con | nector 2 (Primary) (Fisl | her DEE104A06) | 475 | | Pin 1 - pin 2 | (-160uv) - 150 m | Pin 2 - pin 3 (-4 | 50uv) - 72/~ V | | Pin 1 - pin 3 | (-160uv) <u>- 150 m. V</u>
(-600uv) <u>- 574 u</u> V
(-1.1mv) <u>- 1.0 m.</u> V | Pin 3 - pin 4 (-48 | 0uv) 7486V | | Pin I - pin 4 | (-1.1mv) <u>-1.0 m</u> V | Pin 4 - pin 5 (-3.5 | 5mv) | | Pin I - pin 5 | (-4.7mv) <u>-4.3</u> V | Pin 5 - pin 6 (He | oat) v | | Voltage ten Co | (float) V | (Eighar DEE 104 A 04 | : \ | | | nnector 2 (Redundant)
2 (-160uv) -/50 w V | | | | | (-600uv) - 5 76 L. V | | | | Pin 1 - pin 3 | (-1.1mv) -1.0 _m V | Pin 4 - pin 5 (-3.5 | | | | (-4.7mv) -4.3 V | | | | | (float) V | rans pars (III | | | F | (| | | | 3.2 Using 2 Vtap ca | ables: Connection 1-one | vtap cable from the | primary of each lead | | | Connection 2- on | e vtap cable from th | e redundant of each lead | | | ction1 (Primary) | | | | | d Pin 1 - Negative Lead | | | | Positive Lea | d Pin 1 - Negative Lead
d Pin 1 - Negative Lead | pin 4 (7.3mv) 6- | 4 m V | | | | | | | | d Pin 1 - Negative Lead | | | | Positive Lea | d Pin 1 - Negative Lead | pin (8.3mv) / | <u> </u> | | Connec | ction 2 (Redundant) | | | | | d Pin 1 - Negative Lead | pin 5 (3.7mv) 3 | lm V | | | d Pin 1 - Negative Lead | - | | | Positive Lead | d Pin 1 - Negative Lead | pin 3 (7.7mv) 6 | <u>.4 m</u> V | | | d Pin 1 - Negative Lead | | | | | d Pin 1 - Negative Lead | • • | | | <u> </u> | neasurements are comp | | • • • | | disconnect kep | co power cable on posit | tive and negative lea | d. | DFLX 34 DFLX 33 ### 7500A HTS Power leads for the LHC DFBX Doc. No. Rev. 1 (SF) Date:January 31, 2003 Page 3 of 3 Author: Fred Lewis # 9. Room Temperature Electrical Checkout | Performed by | | | | | | | | | |--|---|--------------------|-----------------------------|-----------------------------|--|---|-----------------------------|-----------------------| | | (Name typed |) | | | (Sig | nature) | | | | Date & time | | | | | ····· | | | | | Pos. Power Lead 750 | 00 A DFLX | <u> 34</u> | _ and | Neg. | Power Lea | đ <u>7500 A D</u> | FLX_ | 33 | | 3.3 Temperature senso 3 (lead rtd's) of le 3B). 3.3.1 Two wire measurements. | ads. Lead rte | d's are | (511 | -3, 51 | 12-3, 509-3 | A, 509-3B, 5 | 10-3A | A, 510- | | Resistance be | tween Pin 1 | and r | oin 2 | <i>(</i> .800 | 1.01 | Ω | | | | Resistance be | | • | oin 3 (| • | / | Ω | | | | Resistance be | | - | oin 4 | ` ' | | $-\frac{-}{\Omega}$ | | | | Resistance be | | - | oin 3 | | | $-\frac{1}{\Omega}$ | | | | Resistance be | | - | oin 4 (| | | ${\Omega}^{}$ | | | | Resistance be | | • | oin 4 (| | | Ω | | | | | | | , | • • | · — · · · | stance to flan | ge 🗪 | Ω | | | | | | | | | D~ | | | Resistance be | tween Pin 5 | and r | oin 6 | <i>(</i> .800 | , 1977 | Ω | | | | Resistance be | tween Pin 5 | | oin 7 | | | $^{-}\Omega$ | | | | Resistance be | | | oin 8 | | | Ω | | | | Resistance be | | • | oin 7 | | | $^-\Omega$ | | | | Resistance be | | • | oin 8 (| | **** | Ω | | | | Resistance be | | | oin 8 | | | Ω | | | | | istance to lea | | | | · | istance to flar | nge 4 | ∞ Ω | | | | | | • | | | <i>U</i> | | | Resistance be | tween Pin 9 | and | pin 1 | 0 (.8 | 900) , 90 | \sum_{Ω} | | | | Resistance be | tween Pin 9 | | pin 1 | | | Ω | | | | Resistance be | tween Pin 9 | | | | 09) 110 | $^{}$ Ω | | | | Resistance be | tween Pin 10 | and | pin 1 | 1 (10 | 9) 16 | Ω | | | | Resistance be | tween Pin 10 | and | pin 1 | 2 (10 | 09) bl | Ω | | | | Resistance be | tween Pin 11 | and | pin 1 | 2 (.80 | 00) · ð 7 | \mathfrak{b} Ω | | _ | | Pins 9-12 re | esistance to le | ead _ | <u>ゎ</u> | ΩPin | ns 9-12 res | stance to flan | ige | $\simeq \Omega$ | | 3.3.2 Using HP3458 measurement to Resistance of T1 Resistance of T2 Resistance of T3 | DVM measi
echnique:
$\frac{1019}{104.9} \Omega$ | ure ter
(108.5) | nperar
5)(I+ a
(I+ ar | ture s
at pin
t pin : | ensor resis
1,U+ at pi
5, U+ at pi | tance with the
12,I- at pin 3
16, I- at pin 7 | e four
,U- at
7, U- a | wire pin 4) at pin 8) | | | | | | | | | | | Doc. No. **Rev. 1 (SF)** Date:January 31, 2003 Page 4 of 4 #### **Author: Fred Lewis** | 9. Room | Temperature | Electrical | |---------|--------------------|------------| | | Checkout | | | Performed by | | | | | | |---|----------------------------|---------------------------------|---
--|---------| | Date & time | (Name typed | | (8 | Signature) | | | Pos. Power Lead | 7500 A DFLX | 34 and | Neg. Power Le | ead <u>7500 A DFLX</u> 33 | _ | | 3.3.3 Two wire me | easurement on co | onnector 3 o | f Negative Lea | ead (Fisher DEE104Z086): | | | Resistance | between Pin 1 | and pin 2 | (.800) /.04 | $t = \Omega$ | | | Resistance | between Pin 1 | and pin 3 | | Ω | | | Resistance | between Pin 1 | and pin 4 | ` / | Ω | | | Resistance | between Pin 2 | • | · / | Ω | | | Resistance | between Pin 2 | and pin 4 (| ` / | Ω | | | Resistance | between Pin 3 | and pin 4 | · · · · · · · · · · · · · · · · · · · | | | | Pins 1-4 | resistance to lea | • | ` / | esistance to flange \(\text{\text{\text{\text{\text{\text{C}}}}} \) | 2 | | Resistance | between Pin 5 | and pin 6 (| (.800) 98 | 84 $_{\Omega}$ | | | Resistance | between Pin 5 | and pin 7 | * ************************************* | $\overline{\Omega}$ | | | | between Pin 5 | = | • | | | | Resistance | between Pin 6 | and pin 7 (| ` | · | | | Resistance | between Pin 6 | and pin 8 (| / | | | | Resistance | between Pin 7 | and pin 8 | / | 0 Ω | | | Pins 5-8 | resistance to lea | • | | resistance to flange | Ω | | Resistance | between Pin 9 | and pin 10 | (.800) <u>, 9</u> | OS O | | | Resistance | between Pin 9 | and pin 1 | l (109) <u> </u> | δ Ω | | | Resistance | between Pin 9 | and pin 12 | 2 (109) | \mathcal{O} Ω | | | Resistance | between Pin 10 | and pin L | l (109) <i>l i</i> | Ω | | | Resistance | between Pin 10 | and pin 12 | 2 (109) | Ω | | | Resistance | between Pin 11 | and pin 12 | | | | | Pins 9-1: | 2 resistance to le | $ad \bigcirc \bigcirc \bigcirc$ | Ω Pins 9-12 re | esistance to flange $\mathcal{O} \Omega$ | | | | 158 DVM measunt technique: | ire temperat | ure sensor resi | sistance with the four wire | | | Resistance of T
Resistance of T
Resistance of T | Ω 107.8 Ω (1 | 08.5)(I+ at 1 | pin 5, U+ at pi | n 2,1- at pin 3,U- at pin 4)
vin 6, 1- at pin 7, U- at pin 8)
n 10,1- at pin 11,U- at pin 12 |)
2) | Doc. No. Rev. 1 (SF) Date: January 31, 2003 Page 5 of 5 Author: Fred Lewis ### 9. Room Temperature Electrical Checkout | Performed by | | | |-----------------|---------------|--------------------------------------| | Date & time | (Name typed) | (Signature) | | Pos. Power Lead | 7500 A DFLX 3 | 4 and Neg. Power Lead 7500 A DFLX 33 | 3.4 Check remaining rtd's. This includes rtd's in the dewar (530-3,531-3,532-3,534-3, 535-3), in the leads (507-3A, 507-3B), for the N2 shield (594-3), and the outlet HE for each lead (513-3,514-3). Connect cables for three 19-pin top plate connectors labeled "dewar 0, dewar 1, and dewar inlet HE te/ll". Also connect 4-pin cables for N2 shield and outlet HE (one for each lead). All of these can be read out on the cryo computer. This cannot be done until Mike T has rebooted the system. Once into the system, you need to switch to a computer on the main network. The command for this is "ssh" (for example, ssh mdtf34). To open the GUI and choose readout values type "numdisp –n mtfvx27&". The selected rtd's should read room temperature that is approximately 295 K. The cables for rtd's in the leads can be connected (511-3,512-3,509-3A, 509-3B, 510-3A, 510-3B) and can be read out on the mtfops computer and should also read approximately 295 K. Any problems list in space 3.5 Check both liquid levels (12" and 30"). The 12" liquid level is connected to pins 9-12 of "dewar inlet HE te/ll" cable. Connect 4-pin cable to top plate for 30" probe. Disconnect J1 at the back of each liquid level meter and do a 4-wire resistance measurement on each probe. The resistance should read about 165 Ω (for 12") and 412 Ω (for 30"). Wires come out to pins 1(red), 7(black), 8(blue), and 6(yellow) on J1 connector. Do following measurements for each probe: 1.1(red) to 8(blue) should be approx. 5 Ω 2. 8(blue) to 6(yellow) should be approx. (13.75 X active length of probe) 165 Ω for 12" and 412.5 Ω for 30" 3. 6(yellow) to 7(black) should be something less than 5 Ω 4. 1(red) to 7(black) should approximately equal resistance from #2 + #1 provided below: Doc. No. Rev. 1 (SF) Date: January 31, 2003 Page 6 of 6 **Author: Fred Lewis** #### 9. Room Temperature Electrical Checkout 4-Wire resistance measurement: 12" Dewar 164 & 30" Dewar 404 & 30" Phase sep. 404 & 1.1(red) to 8(blue) 30" Phase sep 12" Dewar 30"Dewar 6.312 6.2 R 2. 8(blue) to 6(yellow) 166 R 405 R 406 R 2.5 R 1.2 R 2.1 R 171 R 410 R 411 R 3. 6(yellow) to 7(black) 4. 1(red) to 7(black) Looking from the top of the lead down where the LTS cable is located. Connector 2= Redundant, Connector 1= Primary and Connector 3= RTD. NOTE: After checkout is complete, be sure to set up kepco with function generator for +/- 10 amps and then turn off. Cryo techs will turn on when they begin cool down. 10. Installation of the Top Plate Doc. No. Rev. 3 (RJR) Rev. Date: June 17, 2003 Page 1 of 2 #### **FERMILAB Technical Division** ### 7500 A HTS Power Leads for the LHC DFBX: 10. Installation of the Top Plate **Lead Pair** Negative Lead: DFLX 33 Positive Lead: DFLX34 ### 10. Installation of the Top Plate Doc. No. Rev. 3 (RJR) Rev. Date: June 17, 2003 Page 2 of 2 | 1 | | | |-------------|-----|--| | | | | | | 1. | Install all bolts to fasten the top plate to the dewar extension. | | | 2. | Loosen the tensioning rod nuts on the undersides of the lead plates at least 0.5 mm below the lead plate. | | | 3. | Install the transfer lines for maintaining the test dewar liquid level. | | | 4. | Install the transfer lines supplying the 4-20 K circuit. | | <u> </u> | 5. | Install the test dewar flexible vent line. | | · V | 6. | Install a power lead vent stack on each power lead, keeping in mind the orientation of the vent line. | | | 7. | Connect the vent lines (thermally insulated, non-conductive hoses) to the power lead vent stacks. | | <u> </u> | 8. | Connect the lines labeled "+ LD PDT -" and "- LD PDT -" to the positive and negative lead vent stacks, respectively. These lines connect to the low side of the differential pressure transducers. | | <u> </u> | 9. | Connect the lines labeled "+ LD PDT +" and "- LD PDT +" at the 4-20 K female bayonet vacuum jacket. These lines connect to the high side of the differential pressure transducers. | | | 10. | Connect the power leads' warm gas supply line to the 4-20 K transfer line. | | | 11. | Connect one end of the bypass line at the phase separator and the other end at the vent piping. | | | | | | | | | Doc. No. Rev. No. Date: March 5,2003 Page 1 of 1 Author: Dan Eddy ### / Ø.1 Warm Temp Hi-pot In Gasous He Environment Note: Save the shipping container for storing and moving the leads around TD and after the test is complete to ship them to the DFBX manufacturer. | Performed by Dan W, Fred L Jan Was | |--| | Performed by Dan W Fred L Zan WWa- (Name typed) (Signature) (Signature) | | Pos. Power Lead 7500 A DFLX 34 and Neg. Power Lead 7500 A DFLX 33 | | This hi-pot should be performed after dewar has been filled with gaseous helium. Notify the Cryo Operator before you disconnect cables. When checkout is | | complete, make sure you place the original and a copy of this document in the
Fraveler Binders. | | 3.1 Short all of the temperature sensors together using the special RTD high pot cable. High pot each set of temperature sensor to 300v with respect to the Lead (ground). | | Record breakdown voltage (if any)V. Record current, o \(\omega \) A | | 3.2 Hi-pot the leads in a gaseous He environment to 1500V (1.3 Bar) using a Droege HV power supply. Connect the positive clip to one lead and the negative clip to ground. Also, short all of the temperature sensors together using the special RTD high pot cable. Connect the ring terminal from each connector to the flag of each lead. Be sure to disconnect all voltage tap cables on both leads and the power connections from Kepco power supply. | | Record breakdown voltage (if any)V. Record currentA. Record approximate temp245K. Record approximate dewar pressure3.5PSIG. | 12. Cooldown Checklist Doc. No. Rev. 1 (RJR) Rev. Date: May 12, 2003 Page 1 of 2 # FERMILAB Technical Division # 7500 A HTS Power Leads for the LHC DFBX: 12. Cooldown Checklist **Lead Pair** Negative Lead: DFLX 33 Positive Lead: DFLX 34 Signed (Nogen Pabell) Date 7/24/03 ### 12. Cooldown Checklist Doc. No. Rev. 1 (RJR) Rev. Date: May 12, 2003 Page 2 of 2 1. ±5 A applied to the current leads during cooldown. 2. DAQ system is operational (temperature sensor readouts in the test dewar helium space are updating). 3. Test dewar and power leads cooled down as per the cooldown procedure "7500 A HTS Power Leads for the LHC DFBX: 12b. Cryogenic Operating Procedure". Doc. No. Rev. No. Date: March 5,2003 Page 1 of 1 #### Author: Dan Eddy # 13. Cold Temp Hi-pot In HE Environment Note: Save the shipping container for storing and moving the leads around TD and after the test is complete to ship them to the DFBX manufacturer. | Performed by Dan W, Fred L Date & time 7/24/03 Pan WJan (Signature) | | | |
--|--|--|--| | Date & time $\frac{7/24/63}{}$ (Signature) | | | | | Pos. Power Lead 7500 A DFLX 34 and Neg. Power Lead 7500 A DFLX 33 | | | | | This hi-pot should be performed after dewar has been filled with liquid helium. Notify the Cryo Operator before you disconnect cables. When checkout is complete, make sure you place the original and a copy of this document in the Traveler Binders. | | | | | 3.1 Short all of the temperature sensors together using the special RTD high pot cable. High pot each set of temperature sensor to 300v with respect to the Lead (ground). | | | | | Record breakdown voltage (if any)V. Record currentA | | | | | 3.2 Hi-pot the leads in a cold (4.5K) He environment to 1500V (1.3 Bar) using a Droege HV power supply. Connect the positive clip to one lead and the negative clip to ground. Also, short all of the temperature sensors together using the special RTD high pot cable. Connect the ring terminal from each connector to the flag of each lead. Be sure to disconnect the redundant voltage taps on both leads and the power connections from Kepco power supply. | | | | | Record breakdown voltage (if any)V. Record current, 3 \simA. Record approximate temp4 . 2 \kappaK. Record approximate dewar pressure3PSIG. | | | | 14. Connect the Leads to the Power Supply & Configure Doc. No. Rev. 2 (RJR) Rev. Date: June 30, 2003 Page 1 of 3 # FERMILAB Technical Division # 7500 A HTS Power Leads for the LHC DFBX: 14. Connect the Leads to the Power Supply & Configure | - | _ | | _ | |---|-------|---------------------------|----| | 1 | ∠ead | $\mathbf{p}_{\mathbf{o}}$ | ir | | 1 | rcau. | 10 | | Negative Lead: DFLX 33 Positive Lead: DFLX 34 | Signed | Noger Rabebl | Date 7/24/03 | |--------|--------------|--------------| | _ | | | # 14. Connect the Leads to the Power Supply & Configure Doc. No. Rev. 2 (RJR) Rev. Date: June 30, 2003 Page 2 of 3 | 1. | Power Supply Changes | | | | |----|----------------------|---|--|--| | | 1 | 1 On the FIX32 HMTF Power Interlock screen, switch the selector switch to the Stand 3 position. | | | | | 1. | 2 Switch warning lights to the "Stand 3" position. | | | | | 1. | 3 Adjust the power supply time constant by setting the resistance to 500 $\mu\Omega$. | | | | | 1. | 4 Adjust the power supply time constant by setting the inductance to 0.5 mH. | | | | | 1. | 5 Adjust the dump resistance to $30 \text{ m}\Omega$. | | | | 2. | Bus Conne | ction Changes – Stand 3 Side | | | | | 2. | 1 Perform MTF-ELEC-07 (VMTF/ST4/ST3) LOTO procedure for all handling of flexible bus work. | | | | | 2. | 2 Mate the Stand 3 hard bus with the Stand 4 flexible bus on the Stand 4 platform. Verify the polarity is correct. | | | | | 2. | 3 Disconnect trim current supply leads. | | | | | 2. | 4 Connect the flex leads and chill blocks to the power lead flags. | | | | | 2. | 5 Attach voltage taps VFF-A and VFF-B at the negative and positive flex lead flags, respectively, and voltage VLF-A and VLF-B at the negative and positive power lead flags, respectively. These taps will allow the voltage drop across the flex lead/chill block joint and chill block/power lead joint to be measured. | | | | | 2. | 6 Using glass tape, attach the Kapton-wrapped platinum temperature sensors TE515-3 and TE516-3 to the positive and negative lead flags, respectively. | | | | | 2. | 7 Wrap the power lead flags with rubber insulation for personnel safety. | | | | | | 8 Install the plexiglass enclosure around the power leads for personnel safety. | | | | 3. | Bus Conne | ction Changes – VMTF End | | | | | 3. | 1 Remove the short VMTF flex leads from the 30 kA bus work. | | | | | 3. | 2 Install flex leads from the Stand 4 bus to the 30 kA bus work. | | | Negative lead DFLX 33 Positive lead DFLX 34 Doc. No. Rev. No. Date:May 13, 2003 Page 1 of 1 #### **Author: Fred Lewis** #### 15. OD circuit checkout | Performed by_ | Dan W Fred L | Jan Walson | |---------------|----------------------|-------------| | Date & time _ | 7/24/03 (name typed) | (signature) | Power Lead 7500 A DFLX 34 When checkout is complete, make sure you place this document in the Traveler Binders - (1) Connect HTS LEAD V-TAP Breakout box to 6 pin Primary V-TAP connector for Lead #1 and Lead #2. - (2) Connect HTS LEAD V-TAP Breakout box to 8 pin Lead test cable connector for Lead #1 and Lead #2. - (3) Connect standard breakout box to one of the 8 pin Lead test cables on the Stand-4 platform. - (4) Use a voltage source to inject a signal into the appropriate pins as per the Threshold Setup spreadsheet and set the threshold. Do the same for the other lead by using the other lead test cable. - (5) Make a copy of the Threshold setup spreadsheet and place it in Traveler for both leads along with a copy of this form. - (6) The quench management cables for stand 3 will always remain connected to the QM box. These cables include quench characterization for the positive and negative lead and quench detection for the positive and negative lead. There are six cables that need to be connected from stand 4. These include FVTLD1, FVTLD2, FVT+LEAD, FVT-LEAD, FVT WC 1/2C M1, and FVT WC 1/2C M2. These cables should be plugged into the corresponding connectors on QM box. Doc. No. Rev. No. Date:April 2, 2003 Page 1 of 2 #### **Author: Sandor Feher** ### 16. Cold test of the power leads | Performed by ROGER RABEHL/MIKE TARTAGLIA Roge Rubehl (name typed) (signature) | |--| | Date & time JULY 25, 2003 (signature) | | Power Lead 7500 A DFLX 33 & 7500 A DFLX 34 | | 16.0 Set the DAQ system ScribeLeads and ScribeFix32 Data Logging Intervals to capture data every 10 seconds. | | 16.1. Establish cryogenic parameters for normal high current operating conditions. Set the liquid level at 6in location using the 1 foot LL probe Set the copper section inlet cooling gas temperature to 15-20K range Set the LHe vapor cooling control loop in automatic mode to keep the upper HTS terminal temperature at 45 K for ½ hour Set the upper HTS temperature to 50 K and keep it there for ½ hour | | 16.1.1 Set software quench detection thresholds by executing: /usr/vmtF/sh/lhchts_setquenchthreshhold_run.sh | | 16.2 Stair step profile test. Turn on the Power Supply. Set HTS terminal temperature to 50K and apply current profile 1 Monitor voltages and make sure that the data is recorded. Run data analysis tool on the obtained data file to determine joint resistances. 7500 A DFLX 33 R(joint1) = 0.00034 = 4000 (V2-V3) R(joint2) = 0.000036 V=4,800 (V3-V4) | | $R(\text{joint 1}) = \frac{0.0003 \text{ V}}{1500 \text{ A}} = 40 \text{ A} (\text{V2-V3})$ $R(\text{joint 2}) = 0.000023 \text{ V} = 3.1 \text{ A} (\text{V3-V4})$ $16.3 \text{ Coolant loss test.}$ | | 16.3 Coolant loss test. Apply 7500 A and a) Close the coolant flow for 7500 A DFLX 33 (NEG. LEAD) Wait until QD detects the quench and record T1 = 86 K; T2 = 317K; V12 = ; V23 = ; V24 = 0.000118 V | | b) Re-establish operating conditions c) Close the coolant flow for 7500 A DFLX 34 (Pos. LEAD) Wait until QD detects the quench and record T1 = 78 K; T2 = 288K; V12 = ; V23 = ; V24 = 0, 000, 306 V | | 16.4 Set the upper HTS terminal temperature to 45 K and apply 7500 A apply current profile 2. Set HTS terminal temp to 50 K and apply current profile 2. | Doc. No. Rev. No. Date:April 2, 2003 **Page 2 of** 2 **Author: Sandor Feher** ### 16. Cold test of the power leads 16.5 When test is completed, set the ScribeLeads and ScribeFix32 Data Logging Intervals to 300 seconds. Note: If any irregularity occur call Sandor. Profile 1: Profile 2: 7500A Ramp rate is 200A/sec Flat top duration at 0 A is 2min Flat top duration at 7500A is 2 hours Doc. No. Rev. No. Date:April 2, 2003 Page 1 of 2 #### **Author: Sandor Feher** ### 16. Cold test of the power leads | Performed by ROCER RABEHL Slove Rabell | |--| | Date & time JULY 28, 2003 1200 (signature) | | Power Lead 7500 A DFLX 33 & 7500 A DFLX 34 | | 16.0 Set the DAQ system ScribeLeads and ScribeFix32 Data Logging Intervals to capture data every 16 seconds. | | 16.1. Establish cryogenic parameters for normal high current operating conditions. Set the liquid level at 6in location using the 1 foot LL probe | | Set the copper section inlet cooling gas temperature to 15-20K range Set the LHe vapor cooling control loop in automatic mode to keep the upper HTS terminal temperature at 45 K for ½ hour Set the upper HTS temperature to 50 K and keep it there for ½ hour | | 16.1.1 Set software quench detection thresholds by executing: /usr/vmtf/sh/lhc_setquenchthreshold_run.sh | | 16.2 Stair step
profile test. Turn on the Power Supply. Set HTS terminal temperature to 50K and apply current profile 1 Monitor voltages and make sure that the data is recorded. Run data analysis tool on the obtained data file to determine joint resistances. 7500 A DFLX 33 R(joint1) = 20003V = 40 nQ (V2-V3) | | $R(joint2) = \underbrace{o.coco27V}_{7500.4} = 3.6 \text{ s.c.} (V3 V4)$ | | | | a) Close the coolant flow for 7500 A DFLX 33
Wait until QD detects the quench and record 37
T1 = 80 K ; T2 = 315 K ; V12 = -0.00034 V | | b) Re-establish operating conditions c) Close the coolant flow for 7500 A DFLX 34 Wait until QD detects the quench and record T1 = 79 K; T2 = 302 K; V12 = 0,00104 V V24 = 0,000104 V | | 16.4 Set the upper HTS terminal temperature to 45 K and apply 7500 A apply current profile 2. Set HTS terminal temp to 50 K and apply current profile 2. | Doc. No. Rev. No. Date:April 2, 2003 Page 2 of 2 Author: Sandor Feher ### 16. Cold test of the power leads 16.5 When test is completed, set the ScribeLeads and ScribeFix32 Data Logging Intervals to 300 seconds. Note: If any irregularity occur call Sandor. Profile 1: Profile 2: 7500A Ramp rate is 200A/sec Flat top duration at 0 A is 2min Flat top duration at 7500A is 2 hours Doc. No. Rev. No. Date: March 5,2003 Page 1 of 1 #### Author: Dan Eddy ### 20. Warm Temp Hi-pot In Gasous He Environment Note: Save the shipping container for storing and moving the leads around TD and after the test is complete to ship them to the DFBX manufacturer. | Performed by Dan W Jan W | |--| | Date & time | | Pos. Power Lead 7500 A DFLX 39 and Neg. Power Lead 7500 A DFLX 33 | | This hi-pot should be performed after dewar has been filled with gaseous helium after the second test cycle has been completed and the dewar is at room temperature. When checkout is complete, make sure you place the original and a copy of this document in the Traveler Binders. | | 3.1 Short all of the temperature sensors together using the special RTD high pot cable. High pot each set of temperature sensor to 300v with respect to the Lead (ground). | | Record breakdown voltage (if any)V. Record currentA | | 3.2 Hi-pot the leads in a cold (4.5K) He environment to 1500V (1.3 Bar) using a Droege HV power supply. Connect the positive clip to one lead and the negative clip to ground. Also, short all of the temperature sensors together using the special RTD high pot cable. Connect the ring terminal from each connector to the flag of each lead. Be sure to disconnect the redundant voltage taps on both leads and the power connections from Kepco power supply. | | Record breakdown voltage (if any) | 23. Pack and Ship the Leads Doc. No. Rev. - (RJR) Rev. Date: June 17, 2003 Page 1 of 3 # **FERMILAB Technical Division** # Stand 3 LHC-HTS Lead Testing: 23. Pack and Ship the Leads **Lead Pair** Negative Lead: DFLX 33 Positive Lead: DFLX34 | | Hores | Rabehl | _ | 7/21/02 | |--------|---------|--------|------|---------| | Signed | - togue | vaven | Date | 1/31/03 | | - | | | | • | #### 23. Pack and Ship the Leads Doc. No. Rev. - (RJR) Rev. Date: June 17, 2003 Page 2 of 3 #### 1. Pack the Leads 1.1 With the lead on the steel table, swing the insertion/lifting tool 180° so that the lead can be picked up and remain horizontal as shown in Figure 1.1. **<u>Figure 1.1</u>** Orientation of the insertion/lifting tool to allow the power lead to be held horizontally. - 1.2 Lift the power lead off of the steel table. - 1.3 While supporting the lead from the crane, remove the end support clamped around the lower flange of the power lead. - **1.4** Complete the lead preparation checklist: Place a cap on the Conflat flange at the top of each lead. ### 23. Pack and Ship the Leads Doc. No. Rev. - (RJR) Rev. Date: June 17, 2003 Page 3 of 3 | | <u>/_/f</u>) | Wrap the power lead vacuum pumpout in aluminum foil. | |--|------------------------------------|--| | | <u></u> | Secure the power lead bus and voltage tap wires to the power lead lower G-10 section with tape. | | | <u></u> | Set each lead in the shipping crate and remove the insertion/lifting tool. | | 1.5 | .5 Complete the packing checklist: | | | | a) | Reinstall the wooden supports in the crate to hold the lead in place during shipping. | | | b) | Make two photocopies of all documents in the lead travelers, and place the power lead travelers in the shipping crate. One copy of the documents is for Sandor, the second copy is for Marsha Schmidt. | | | c) | Verify the following items are in the shipping crate: | | | | (i) Two flag heaters | | | | ii) Two flag heater connectors | | | <u></u> | iii) Vacuum pumpout actuator | | | | iv) NW16 clamp | | | <u> </u> | v) NW16 o-ring | | 1.6 | Close the shipping | crate | | 2. Ship the Leads2.1 Complete the shipping checklist: | | | | | a) | Call Marsha Schmidt (X-4377) to request that the power leads be shipped to storage. | | | | | | | | | | | 1.6
Ship | 1.5 Complete the packing a) b) c) 1.6 Close the shipping Ship the Leads |